General Specifications

Model MH5 Isolator (Free Range Type) **NTXUL**

GS 77J04H05-01E

General

The MH5 is a plug-in type isolator that converts DC current or DC voltage signals into isolated DC current or DC voltage signals.

- I/O range setting, selection of square root extractor and breakpoint linearization (breakpoint setting), I/O adjustment, I/O monitoring, and loop back test can be made using the optional Parameter Setting Tool (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operation status, abnormalities in a setting etc.
- I/O adjustment can be made using the switches on the front panel of the MH5 without a setting tool such as Handy Terminal.

■ Model and Suffix Codes

Note: Specify "/R100" or "/R250" when using different receiving resistor from the receiving resistor specified in the input signal suffix code "A" or "B".

Ordering Information

Specify the following when ordering.

- Model and suffix codes: e.g. MH5-016-AA00
- Input range: e.g. 4 to 20 mA DC
- Output range: e.g. 4 to 20 mA DC

Specify a lowcut point when "with square root extractor" is required: e.g. Lowcut point 0.4%

The isolator will be shipped with a lowcut point of 0.6% if no specification of lowcut point.

Specify breakpoints in Work Sheet when linearization is required.

The isolator will be shipped with a specified resistor if the input signal is current input and a receiving resistor of the optional specification is specified.

■ Input/Output Specifications

Input signal: DC current or DC voltage signal Input signal setting range:

Input signal suffix code	Setting range		
A	±20 mA DC Span is 1 mA or more		
	±50 mA DC Span is 5 mA or more		
В	(±35 mA DC Span is 2 mA or more for the		
	optional specification "/R250")		
1	±10 V DC Span is 1 V or more		
2	±2 V DC Span is 3 mV or more		

Input resistance:

Current input: 250 Ω for the suffix code "A"

100 Ω for the suffix code "B"

Note: A specified resistor is applied if a receiving resistor of the optional specification is specified.

Voltage input: 1 M Ω for the suffix code "1"

(800 kΩ during power off) 1 MΩ for the suffix code "2" (10 kΩ during power off)

Maximum allowable input:

Current input:

40 mA DC or less for 250 Ω receiving resistor.

70 mA DC or less for 100 Ω receiving resistor.

Voltage input: ±15 V DC or less

Square root extractor: Outputted against the result of extracting square root of input.

Lowcut point setting range: 0.3 to 100% of input, setting available by 0.1% notch

Output characteristic: Output for lowcut point or less is cramped with straight line proportional to input.

Output signal: 1 point of DC current or DC voltage signal

Output signal setting range:

Output signal suffix code	Setting range
Α	0 to 20 mA DC Span is 5 mA or more
В	0 to 5 mA DC Span is 1 mA or more
1	±10 V DC Span is 0.1 V or more
2	±100 mV DC Span is 10 mV or more

Allowable load resistance:

Voltage output: $2 \text{ k}\Omega$ or more for $\pm 5 \text{ V DC}$ $10 \text{ k}\Omega$ or more for $\pm 10 \text{ V DC}$ $250 \text{ k}\Omega$ or more for $\pm 100 \text{ mV DC}$

Current output: 15 (V)/max. output (A) (Ω) or less Linearization:

Breakpoint: Up to 32 points (Set a relationship between input and output with % value over the span.)

Allowable setting range of breakpoint:

- −6 to +106% (both input and output)
- With 4 significant digits; can be set to the second place of a decimal point.
- Set breakpoints according to the following. For input: $-6.0\% \le X_0 < X_1 < X_2 \cdots X_{n-1} < X_n \le 106.0\%$ For output: $-6.0\% \le Y_0$ to $Y_n < 106.0\%$

Adjustment range:

Input adjustment: ±1% of span or more (Zero/Span)
Output adjustment: ±5% of span or more (Zero/
Span)

■ Standard Performance

Accuracy rating: ±0.1% of span

However, the accuracy is not guaranteed for output levels less than 0.5% of the span of a 0 to X mA output range type.

For square root extractor input, $\pm 1\%$ of span when the input is 2% or less.

The accuracy is limited according to the input/output range settings.

Accuracy Calculation

Accuracy = Input accuracy + Output accuracy (%) Accuracy is obtained by totalizing the expression (1) for input accuracy and the expression (2) for output accuracy. However, $\pm 0.05\%$ is applied if a value obtained from the expression (1) or (2) is less than $\pm 0.05\%$.

For current input, add the error of receiving resistor $\pm 0.1\%$ to the input accuracy.

Input accuracy = $\pm 0.05\% \times a/b \cdots$ expression (1)

Input	signal suffix code	Accuracy calcu	lation condition	
	Input range (Range converted into voltage)	а	b	
A*	±2.5 V DC	1(V)		
B*	Outside of ±2.5 V DC	4(V)		
1	and within ±10 V DC	4(v)		
	±20 mV DC	10(mV)	Input span	
	Outside of ±20 mV DC	40(mV)	(Span converted	
	and within ±100 mV DC	40(1117)	into voltage)	
2	Outside of ±100 mV DC	0.2(\)		
	and within $\pm 0.5 \text{ V DC}$ 0.2(V)			
	Outside of ±0.5 V DC	0.8(\/)		
	and within ±2 V DC	0.8(V)		

^{*:} When input signal is current, the values converted into voltage by the receiving resistor are applied to the input range and input span.

Output accuracy = $\pm 0.05\% \times a/b \cdots$ expression (2)

•	•		. ,		
Outpu	ıt signal suffix code	Accuracy calcu	lation condition		
	Output range	а	b		
Α	0 to 20 mA DC	10(mA)			
В	0 to 5 mA DC	2.5(mA)	1		
	±2.5 V DC	1(V)			
1	Outside of ±2.5 V DC	4()()	Outnut anan		
	and within ±10 V DC	4(V)	Output span		
	±25 mV DC	10(mV)			
2	Outside of ±25 mV DC	40(mV)			
	and within ±100 mV DC				

If 1 or more is set for the line segment gain of linearization, multiply the input/output accuracy by the value of line segment gain.

Line segment gain (slope) is the maximum value calculated from the following expression.

Line segment gain =
$$\frac{Y_{n-}Y_{n-1}}{X_{n-}X_{n-1}}$$

Response speed: 150 ms, 63% response (10 to 90%) Effect of power supply voltage fluctuations:

 $\pm 0.1\%$ of span or less for the fluctuation within the operating range of each power supply voltage specification.

Effect of ambient temperature change:

 $\pm 0.15\%$ of span or less for a temperature change of 10°C.

■ Power Supply and Isolation

Power supply rated voltage:

15-40 V DC ... or

Power supply input voltage:

15-40 V DC ... (±20%) or

100-240 V AC/DC = (-15, +20%) 50/60 Hz

Power consumption:

24 V DC 1.7 W, 110 V DC 1.6 W 100 V AC 3.5 VA, 200 V AC 4.9 VA

Insulation resistance:

 $100~M\Omega$ at 500~V DC between input, output, power supply, and grounding terminals mutually.

Withstand voltage:

2000 V AC for 1 minute between input, output, power supply and grounding terminals mutually.

■ Environmental Conditions

Operating temperature range: 0 to 50°C

Operating humidity range: 5 to 90% RH (no condensation)

Operating conditions: Avoid installation in such

environments as corrosive gas like sulfide hydrogen, dust, sea breeze and direct sunlight.

Installation altitude: 2000 m or less above

sea level.

■ Mounting and Dimensions

Construction: Plug-in type

Material: Main unit : ABS resin (black), UL94 V-0

ABS resin + polycarbonate resin (black),

UL94 V-0

PBT resin, including glass fiber (black),

UL 94 V-0

Socket: Modified polyphenylene oxide resin, including glass fiber (black), UL94 V-1

Mounting: Wall or DIN rail mounting Connection: M3.5 screw terminals

External dimensions: 86.5 (H)×51 (W)×123 (D) mm

(including a socket)

Weight: Main unit: approx. 200 g

Socket: approx. 60 g

Accessories

Spacer: One (for DIN rail mounting)

Range label: One

Receiving resistor: One (for current input)

■ Front Panel

Input/output can be adjusted using the selection switch and adjustment switch.

Position of selection switch	Item to be adjusted
0	No function
1	Output zero adjustment
2	Output span adjustment
5	Input zero adjustment
6	Input span adjustment

■ Terminal Assignments

1	OUTPUT	(+)
2	OUTPUT	(-)
3	INPUT	(+)
4	INPUT	(-)
5	N.C.	
6	GND	(GND)
7	SUPPLY	(L+)
8	SUPPLY	(N-)

■ Block Diagrams

■ External Dimensions

Unit: mm

*1: "250 Ω " or "100 Ω " is attached for current input.

<Mounting Dimensions>

■ Work Sheet

Model and Suffix Codes	

Number of breakpoints

Write at least 2 points for input and output breakpoints data.

Input (%)		Output (%)		Input (%)		Output (%)	
X ₀		Y0	·	X16		Y16 .	
X1		Y1		X17		Y17 .	
X2		Y2		X18		Y18 .	
Хз		Y3		X19	ŀ	Y19 .	
X4		Y4		X20		Y20 .	
X5		Y5		X21		Y21 .	
X6		Y6		X22		Y22 .	
X7		Y7	·	X23	·	Y23 .	
X8		Y8		X24		Y24 .	
X9		Y9		X25		Y25 .	
X10		Y10		X26		Y26	
X11		Y11		X27		Y27 .	
X12		Y12		X28		Y28 Y29	
X13		Y13	·	X29			
X14		Y14		X30		Y30	
X15		Y15		X31	ŀ	Y31 .	

(Specification conditions)

Input conditions: $-6.0\% \le X_0 < X_1 < X_2 < \cdots X_{n-1} < X_n \le 106.0\%$

Output conditions: $-6.0\% \le (Y_0 \text{ to } Y_n) \le 106.0\%$

[•] The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.